

Optical Interconnection Design Innovator

## GIGALIGHT 800G OSFP DR8 500m Silicon Photonics Transceiver Module

P/N: GOS-SI801DR8CA

#### **Features**

- ✓ OSFP MSA and CMIS compliant
- √ 8x106.25Gbps (53.125GBd PAM4) electrical interface
- √ 8x106.25Gbps (53.125GBd PAM4) optics architecture
- ✓ Power consumption <16W</p>
- ✓ Maximum link length of 500m G.652 SMF with KP-FEC
- ✓ Dual MPO-12 receptacles
- ✓ Built-in digital diagnostic functions
- ✓ Operating case temperature 0°C to +70°C
- √ 3.3V power supply voltage
- ✓ RoHS compliant (lead free)

### **Applications**

- ◆ 800GBASE-DR8
- Data center network

### **Description**

The Gigalight GOS-SI801DR8CA is a transceiver module designed for 500m optical communication applications, and it is compliant to OSFP MSA, IEEE 802.3 protocol. The silicon photonics transceiver is based on a new state-of-the-art silicon photonics (SiPh) platform. It uses SiPh chips that integrate a number of active and passive optoelectronic components, 3D packaging technology and 7nm DSP chips. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.



www.gigalight.com

TX1 TX2 TX3 TX4 800G SiPh-M CW Laser 800G Dual DSP(DD) **OSFP** MPO12 8:8 RX8 RX7 RX6 RX5 PIN TIA Array

Figure 1. DR8 Module Block Diagram

# **Absolute Maximum Ratings**

| Parameter                  | Symbol | Min  | Max     | Unit       |
|----------------------------|--------|------|---------|------------|
| Supply Voltage             | Vcc    | -0.3 | 3.6     | V          |
| Input Voltage              | Vin    | -0.3 | Vcc+0.3 | V          |
| Storage Temperature        | Tst    | -40  | 85      | $^{\circ}$ |
| Case Operating Temperature | Тор    | 0    | 70      | $^{\circ}$ |
| Humidity(non-condensing)   | Rh     | 5    | 95      | %          |

# **Recommended Operating Conditions**

| Parameter                  | Symbol | Min  | Typical | Max  | Unit       |
|----------------------------|--------|------|---------|------|------------|
| Supply Voltage             | Vcc    | 3.13 | 3.3     | 3.47 | V          |
| Operating Case temperature | Tca    | 0    |         | 70   | $^{\circ}$ |
| Data Rate Per Lane         | fd     |      | 106.25  |      | Gbit/s     |
| Humidity                   | Rh     | 5    |         | 85   | %          |
| Power Dissipation          | Pm     |      |         | 16   | W          |

# **Electrical Specifications**

| Parameter | Symbol | Min | Typical | Max | Unit |
|-----------|--------|-----|---------|-----|------|
|-----------|--------|-----|---------|-----|------|



www.gigalight.com

Differential input impedance Zin 90 100 110 ohm Differential Output impedance Zout 90 100 110 ohm Differential input voltage amplitude ΔVin 400 900 mVp-p Differential output voltage ΔVout 850 mVp-p amplitude Bit Error Rate BER 2.4E-4 V Input Logic Level High  $V_{IH}$ 2.0  $V_{cc}$ Input Logic Level Low  $V_{\mathsf{IL}}$ 0 8.0 V V Output Logic Level High  $V_{OH}$  $V_{cc}$ -0.5  $V_{cc}$ 0 ٧ Output Logic Level Low  $V_{OL}$ 0.4

#### Note:

- 1) BER=2.4E-4; PRBS31Q@53.125GBd. Pre-FEC
- 2) Differential input voltage amplitude is measured between TxnP and TxnN.
- 3) Differential output voltage amplitude is measured between RxnP and RxnN.

## **Optical Characteristics**

| Parameter                                                         | Symbol      | Min    | Typical | Max    | Unit | Notes |  |  |  |
|-------------------------------------------------------------------|-------------|--------|---------|--------|------|-------|--|--|--|
|                                                                   | Transmitter |        |         |        |      |       |  |  |  |
| Centre Wavelength                                                 | λc          | 1304.5 |         | 1317.5 | nm   | -     |  |  |  |
| Side-mode suppression ratio                                       | SMSR        | 30     | -       |        | dB   | -     |  |  |  |
| Average launch power, each lane                                   | Pout        | -2.9   | -       | 4.0    | dBm  | -     |  |  |  |
| Optical Modulation<br>Amplitude(OMA outer),<br>each lane          | OMA         | -0.8   | -       | 4.2    | dBm  | -     |  |  |  |
| Transmitter and dispersion eye closure for PAM4 (TDECQ),each lane | TDECQ       |        |         | 3.4    | dB   |       |  |  |  |
| Extinction Ratio                                                  | ER          | 3.5    | -       | -      | dB   | -     |  |  |  |
| Average launch power of OFF transmitter, each lane                |             |        |         | -16    | dB   | -     |  |  |  |



Optical Interconnection Design Innovator

| Receiver                                               |       |        |     |        |     |   |  |
|--------------------------------------------------------|-------|--------|-----|--------|-----|---|--|
| Centre Wavelength                                      | λc    | 1304.5 |     | 1317.5 | nm  | - |  |
| Receiver Sensitivity in OMA outer Note1                | RXsen |        |     | -4.4   | dBm | 1 |  |
| Average power at receiver , each lane input, each lane | Pin   | -5.9   |     | 4      | dBm | - |  |
| Receiver Reflectance                                   |       |        |     | -26    | dB  | - |  |
| LOS Assert                                             |       | -15    | -13 |        | dBm | - |  |
| LOS De-Assert                                          |       |        | -11 | -9     | dBm | - |  |
| LOS Hysteresis                                         |       | 0.5    |     |        | dB  | - |  |

#### Note:

1) Measured with conformance test signal at TP3 for BER = 2.4E-4 Pre-FEC



www.gigalight.com

# **Pin List and Description**

| Pin# | Symbol    | Description                     | Logic       | Direction       | Plug<br>Sequence | Notes                                        |
|------|-----------|---------------------------------|-------------|-----------------|------------------|----------------------------------------------|
| 1    | GND       | Ground                          |             |                 | 1                |                                              |
| 2    | TX2p      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 3    | TX2n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 4    | GND       | Ground                          |             | 5               | 1                |                                              |
| 5    | TX4p      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 6    | TX4n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 7    | GND       | Ground                          |             | 100             | 1                |                                              |
| 8    | TX6p      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 9    | TX6n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 10   | GND       | Ground                          |             |                 | 1                |                                              |
| 11   | TX8p      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 12   | TX8n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 13   | GND       | Ground                          |             | S               | 1                |                                              |
| 14   | SCL       | 2-wire Serial interface clock   | LVCMOS-I/O  | Bi-directional  | 3                | Open-Drain with pull-<br>up resistor on Host |
| 15   | VCC       | +3.3V Power                     |             | Power from Host | 2                |                                              |
| 16   | VCC       | +3.3V Power                     |             | Power from Host | 2                |                                              |
| 17   | LPWn/PRSn | Low-Power Mode / Module Present | Multi-Level | Bi-directional  | 3                | See pin description<br>for required circuit  |
| 18   | GND       | Ground                          |             | 15              | 1                |                                              |
| 19   | RX7n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 20   | RX7p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 21   | GND       | Ground                          |             |                 | 1                |                                              |
| 22   | RX5n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 23   | RX5p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 24   | GND       | Ground                          |             |                 | 1                |                                              |
| 25   | RX3n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 26   | RX3p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 27   | GND       | Ground                          |             | 10              | 1                |                                              |
| 28   | RX1n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 29   | RX1p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 30   | GND       | Ground                          |             |                 | 1                |                                              |



Optical Interconnection Design Innovator

| Pin# | Symbol   | Description                     | Logic       | Direction       | Plug<br>Sequence | Notes                                        |
|------|----------|---------------------------------|-------------|-----------------|------------------|----------------------------------------------|
| 31   | GND      | Ground                          |             |                 | 1                |                                              |
| 32   | RX2p     | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 33   | RX2n     | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 34   | GND      | Ground                          | 2           | 8               | 1                |                                              |
| 35   | RX4p     | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 36   | RX4n     | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 37   | GND      | Ground                          |             |                 | 1                |                                              |
| 38   | RX6p     | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 39   | RX6n     | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 40   | GND      | Ground                          |             |                 | 1                |                                              |
| 41   | RX8p     | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |                                              |
| 42   | RX8n     | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |                                              |
| 43   | GND      | Ground                          | 20 1111     |                 | 1                |                                              |
| 44   | INT/RSTn | Module Interrupt / Module Reset | Multi-Level | Bi-directional  | 3                | See pin description<br>for required circuit  |
| 45   | VCC      | +3.3V Power                     | 3           | Power from Host | 2                |                                              |
| 46   | vcc      | +3.3V Power                     |             | Power from Host | 2                |                                              |
| 47   | SDA      | 2-wire Serial interface data    | LVCMOS-I/O  | Bi-directional  | 3                | Open-Drain with pull-<br>up resistor on Host |
| 48   | GND      | Ground                          |             |                 | 1                |                                              |
| 49   | TX7n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 50   | ТХ7р     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 51   | GND      | Ground                          |             |                 | 1                |                                              |
| 52   | TX5n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 53   | TX5p     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 54   | GND      | Ground                          |             |                 | 1                |                                              |
| 55   | TX3n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 56   | TX3p     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 57   | GND      | Ground                          | 82          |                 | 1                |                                              |
| 58   | TX1n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |                                              |
| 59   | TX1p     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |                                              |
| 60   | GND      | Ground                          | si e        |                 | 1                |                                              |

Top Side (viewed from top)

GND

TX1p

TX1n

GND

ТХ3р

TX3n

GND

TX5p

TX5n

GND

TX7p

TX7n

GND

SDA

VCC

VCC

INT/RSTn

GND

RX8n

RX8p

GND

RX6n

RX6p

GND

RX4n

RX4p

GND

RX2n

RX2p

GND



60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

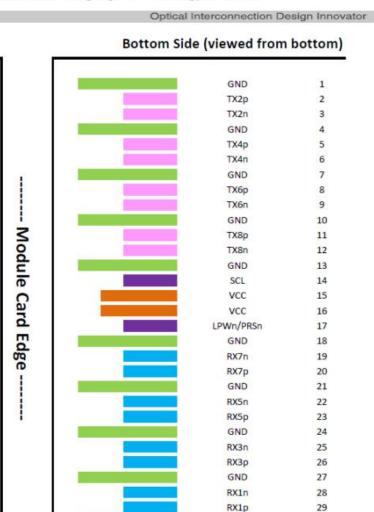
40

39

38

37

36


35

34

33

32

31



GND

30

Figure 2. OSFP module Pin-out Details

#### INT/RSTn

INT/RSTn is a dual function signal that allows the module to raise an interrupt to the host and also allows the host to reset the module. The circuit shown in Figure 4 enables multi level signaling to provide direct signal control in both directions. Reset is an active-low signal on the host which is translated to an active-low signal on the module. Interrupt is an active high signal on the module which gets translated to an active-high signal on the host.

The INT/RSTn signal operates in 3 voltage zones to indicate the state of Reset for the module and Interrupt for the host. Figure 3 shows these 3 zones. The host uses a voltage reference at 2.5 volts to determine the state of the H INT signal and the module uses a voltage reference at 1.25V to determine the state of the M RSTn signal.

0.0 V

www.gigalight.com

3.3V 3.0V **Zone 3** – M\_RSTn=H, H\_INT=H

2.0V

Zone 2 – M\_RSTn=H, H\_INT=L

1.25 volts
Module Reset Threshold

Zone 1 – M\_RSTn=L, H\_INT=L

Figure 3. INT/RSTn voltage zones

- Zone 1 Reset operation Zone 1 is the state when the module is in reset and interrupt deasserted (M\_RSTn=Low, H\_INT=Low). The min/max voltages for Zone 1 are defined by parameters V\_INT/RSTn\_1 and V\_INT/RSTn\_2 in Table 1.
- Zone 2 Normal operation Zone 2 is the normal operating state with reset deasserted (M\_RSTn=High) and interrupt deasserted (H\_INT=Low). The min/max voltages for Zone 2 are defined by parameter V\_INT/RSTn\_3 in Table 1.
- Zone 3 Interrupt operation Zone 3 is the state for the module to assert interrupt and the module must also be out of reset (M\_RSTn=High, H\_INT=High). The min/max voltages for Zone 3 are defined by parameter V\_INT/RSTn\_4 in Table 1.

www.gigalight.com

Module Host VCC 3.3V VCC 3.3V VREF 2.5V H INT M RSTn INT/RSTn VREF 1.25V R1 68k H RSTn M INT Open = No Reset Open =Interrupt Low = Reset Low = No Interrupt GND GND

Figure 4. INT/RSTn circuit

| Parameter    | Nominal | Min   | Max   | Units | Note                                                           |  |  |
|--------------|---------|-------|-------|-------|----------------------------------------------------------------|--|--|
| Host VCC     | 3.300   | 3.135 | 3.465 | Volts | VCC voltage on the Host                                        |  |  |
| H_Vref_INT   | 2.500   | 2.475 | 2.525 | Volts | Precision voltage reference for H_INT                          |  |  |
| M_Vref_RSTn  | 1.250   | 1.238 | 1.263 | Volts | Precision voltage reference for M_RSTn                         |  |  |
| R1           | 68k     | 66k   | 70k   | Ohms  | Recommend 68.1k ohms 1% resistor                               |  |  |
| R2           | 5k      | 4.9k  | 5.1k  | Ohms  | Recommend 4.99k ohms 1% resistor                               |  |  |
| R3           | 8k      | 7.8k  | 8.2k  | Ohms  | Recommend 8.06k ohms 1% resistor                               |  |  |
| V_INT/RSTn_1 | 0.000   | 0.000 | 1.000 | Volts | INT/RSTn voltage for No Module                                 |  |  |
| V_INT/RSTn_2 | 0.000   | 0.000 | 1.000 | Volts | INT/RSTn voltage for Module installed, H_RSTn=Low              |  |  |
| V_INT/RSTn_3 | 1.900   | 1.500 | 2.250 | Volts | INT/RSTn voltage for Module installed, H_RSTn=High, M_INT=Low  |  |  |
| V_INT/RSTn_4 | 3.000   | 2.750 | 3.465 | Volts | INT/RSTn voltage for Module installed, H_RSTn=High, M_INT=High |  |  |

Table 1. INT/RSTn circuit parameters

#### LPWn/PRSn

LPWn/PRSn is a dual function signal that allows the host to signal Low Power mode and the module to indicate Module Present. The circuit shown in Figure 6 enables multi-level signaling to provide direct signal control in both directions. Low Power mode is an active low signal on the host which gets converted to an active-low signal on the module. Module Present is controlled by a pull-down resistor on the module which gets converted to an active-low logic signal on the host.

The LPWn/PRSn signal operates in 3 voltage zones to indicate the state of Low Power mode for the module and Module Present for the host. Figure 5 shows these 3 zones. The host uses a voltage

reference at 2.5 volts to determine the state of the H\_PRSn signal and the module uses a voltage reference at 1.25V to determine the state of the M\_LPWn signal.

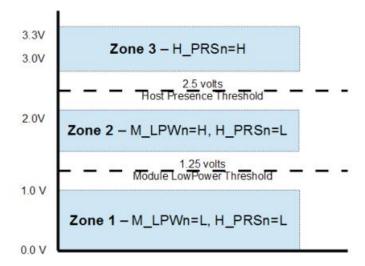



Figure 5. LPWn/PRSn voltage zones

- Zone 1 Low Power mode Zone 1 is the low power state and module is present (M\_LPWn=Low, H\_PRSn=Low). The min/max voltages for Zone 1 are defined by parameters V\_LPWn/PRSn\_1 in Table 2.
- Zone 2 High Power mode Zone 2 is the high power state and module is present (M\_LPWn=High, H\_PRSn=Low). The min/max voltages for Zone 2 are defined by parameters V\_LPWn/PRSn\_2 in Table 2.
- Zone 3 Module Not Present Zone 3 is the state for when the module is not present (H\_PRSn=High). The min/max voltages for Zone 3 are defined by parameters V\_LPWn/PRSn\_3 in Table 2.

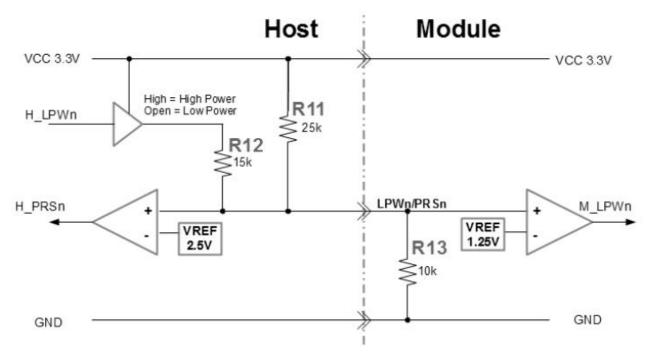



Figure 6. LPWn/PRSn circuit

Table 2. LPWn/PRSn circuit parameters

| Parameter     | Nominal | Min   | Max   | Units | Note                                                |
|---------------|---------|-------|-------|-------|-----------------------------------------------------|
| Host VCC      | 3.300   | 3.135 | 3.465 | Volts | VCC voltage on the Host                             |
| H_Vref_PRSn   | 2.500   | 2.475 | 2.525 | Volts | Precision voltage reference for H_PRSn              |
| M_Vref_LPWn   | 1.250   | 1.238 | 1.263 | Volts | Precision voltage reference for M_LPWn              |
| R11           | 25k     | 24.5k | 25.5k | Ohms  | Recommend 24.9k ohms 1% resistor                    |
| R12           | 15k     | 14.7k | 15.3k | Ohms  | Recommend 15k ohms 1% resistor                      |
| R13           | 10k     | 9.8k  | 10.2k | Ohms  | Recommend 10k ohms 1% resistor                      |
| V_LPWn/PRSn_1 | 0.950   | 0.000 | 1.100 | Volts | LPWn/PRSn voltage for Module installed, H_LPWn=Low  |
| V_LPWn/PRSn_2 | 1.700   | 1.400 | 2.250 | Volts | LPWn/PRSn voltage for Module installed, H_LPWn=High |
| V LPWn/PRSn 3 | 3.300   | 2.750 | 3.465 | Volts | LPWn/PRSn voltage for No Module                     |

# **Power Supply Filtering**

Figure 7 provides an example implementation for a 3.3V power filter on the host board. If an alternate circuit is used for power filtering then the same filter characteristics as this example filter shall be met.

Vcc Host 3.3V

Vcc Host 3.3V

Vcc Module 3.3V

47 uF

Vcc Module 3.3V

Figure 7. Host Board Power Supply Filtering

#### DIAGNOSTIC MONITORING INTERFACE

Digital diagnostics monitoring function is available on all Gigalight OSFP products. A 2-wire serial interface provides user to contact with module.

### **Memory Structure and Mapping**

The TWI protocol only supports eight-bit addresses. This limits the management memory that can be directly accessed by the host to 256 bytes, which is divided in Lower Memory (addresses 00h through 7Fh) and Upper Memory (addresses 80h through FFh).

A larger addressable management memory is required for all but the most basic modules. This is supported by a structure of 128-byte pages, together with a mechanism for dynamically mapping any of the 128-byte pages from a larger internal management memory space into Upper Memory the host addressable space.

The addressing structure of the additional internal management memory is shown in Figure 8. The management memory inside the module is arranged as a unique and always host accessible address space of 128 bytes (Lower Memory) and as multiple upper address subspaces of 128 bytes each (Pages), only one of which is selected as host visible in Upper Memory. A second level of Page selection is possible for Pages for which several instances exist (e.g. where a bank of pages with the same Page number exists).

This structure supports a flat 256 byte memory for passive copper modules and permits timely access to addresses in the Lower Memory, e.g. Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold settings, are available with the Page Select function in the Lower Page. For more complex modules which require a larger amount of management memory the host needs to use



Optical Interconnection Design Innovator

dynamic mapping of the various Pages into the host addressable Upper Memory address space, whenever needed.

**Note**: The management memory map has been designed largely after the QSFP memory map. This memory map has been changed in order to accommodate 8 electrical lanes and to limit the required memory space. The single address approach is used as found in QSFP. Paging is used in order to enable time critical interactions between host and module.

### **Supported Pages**

A basic 256 byte subset of the Management Memory Map is mandatory for all CMIS compliant devices. Other parts are only available for paged memory modules, or when advertised by the module. See CMIS V4.0 for details regarding the advertisement of supported management memory spaces.

In particular, support of the Lower Memory and of Page 00h is required for all modules, including passive copper cables. These pages are therefore always implemented. Additional support for Pages 01h, 02h and bank 0 of Pages 10h and 11h is required for all paged memory modules.

Bank 0 of pages 10h-1Fh, provides lane-specific registers for the first 8 lanes, and each additional bank provides support for additional 8 lanes. Note, however, that the allocation of information over the banks may be page specific and may not to be related to grouping data for 8 lanes.

The structure allows address space expansion for certain types of modules by allocating additional Pages. Moreover, additional banks of pages.

www.gigalight.com Optical Interconnection Design Innovator

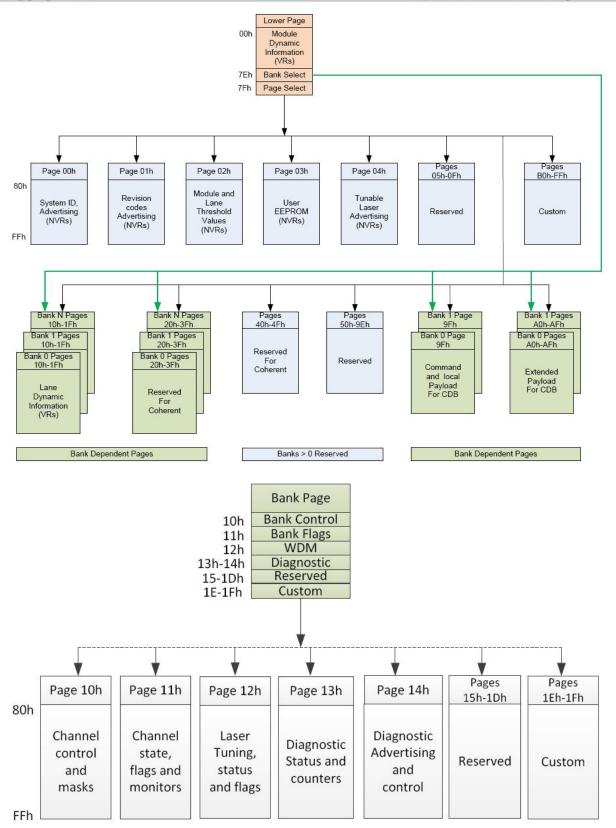



Figure 8. OSFP Memory Map



## **Mechanical Dimensions(mm)**

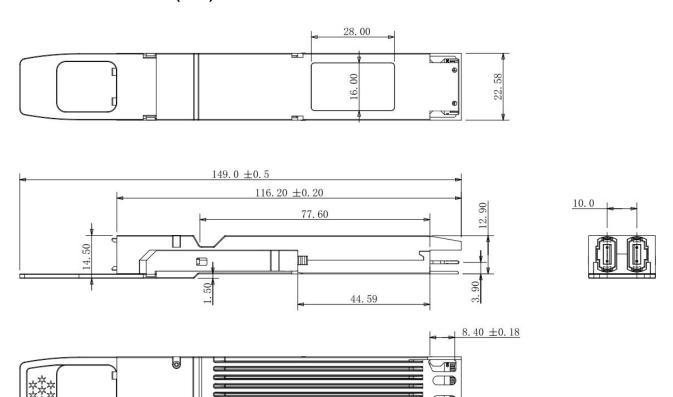



Figure 9. Mechanical Specifications

# **Regulatory Compliance**

Gigalight GOS-SI801DR8CA transceivers are Class 1 Laser Products. They meet the requirements of the following standards:

| Feature                  | Standard                                                                                                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Laser Safety             | IEC 60825-1:2014 (3 <sup>rd</sup> Edition)<br>IEC 60825-2:2004/AMD2:2010<br>EN 60825-1-2014<br>EN 60825-2:2004+A1+A2 |
| Electrical Safety        | EN 62368-1: 2014<br>IEC 62368-1:2014<br>UL 62368-1:2014                                                              |
| Environmental protection | Directive 2011/65/EU with amendment(EU)2015/863                                                                      |
| CE EMC                   | EN55032: 2015<br>EN55035: 2017<br>EN61000-3-2:2014<br>EN61000-3-3:2013                                               |



www.gigalight.com

| G'aci au   |
|------------|
| Gigalight  |
| Cigaligiil |

| FCC | FCC Part 15, Subpart B<br>ANSI C63.4-2014 |
|-----|-------------------------------------------|

#### References

- 1. OSFP MSA
- 2. CMIS
- 3. IEEE802.3
- 4. OIF CEI-112G-VSR



Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

### **Ordering information**

| Part Number    | Product Description                                                                      |  |
|----------------|------------------------------------------------------------------------------------------|--|
| GOS-SI801DR8CA | OSFP, 800GBASE-DR8, 500m on Single mode Fiber (SMF), with DSP and Dual MPO-12 connector. |  |

### **Important Notice**

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: sales@gigalight.com Official Site: www.gigalight.com

### **Revision History**

| Revision | Date        | Description      |
|----------|-------------|------------------|
| V0       | May-08-2024 | Advance Release. |